Noncanonical Links in Generalized Linear Models - When Is the Eeort Justiied?

نویسنده

  • Claudia Czado
چکیده

Generalized linear models (GLMs) allow for a wide range of statistical models for regression data. In particular, the logistic model is usually applied for binomial observations. Canonical links for GLM's such as the logit link in the binomial case, are often used because in this case minimal suucient statistics for the regression parameter exist which allow for simple interpretation of the results. However, in some applications, the overall t as measured by the p-values of goodness of t statistics (as the residual deviance) can be improved signiicantly by the use of a noncanonical link. In this case, the interpretation of the innuence of the covariables is more complicated compared to GLM's with canonical link functions. It will be illustrated through simulation that the p-value associated with the common goodness of link tests is not appropriate to quantify the changes to mean response estimates and other quantities of interest when switching to a noncanonical link. In particular, the rate of misspeciications becomes considerably large, when the inverse information value associated with the underlying parametric link model increases. This shows that the classical tests are often too sensitive, in particular, when the number of observations is large. The consideration of a generalized p-value function is proposed instead, which allows the exact quantiication of a suitable distance to the canonical model at a controlled error rate. Corresponding tests for validating or discriminating the canonical model can easily performed by means of this function. Finally, it is indicated how this method can be applied to the problem of overdispersion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is the Eeort Justiied?

Generalized linear models (GLMs) allow for a wide range of statistical models for regression data. In particular, the logistic model is usually applied for binomial observations. Canonical links for GLM's such as the logit link in the binomial case, are often used because in this case minimal suucient statistics for the regression parameter exist which allow for simple interpretation of the res...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

An Application of Linear Model in Small Area Estimationof Orange production in Fars province

Methods for small area estimation have been received great attention in recent years due to growing demand for reliable small area estimation that are needed in development planings, allocation of government funds and marking business decisions. The key question in small area estimation is how to obtain reliable estimations when sample size is small. When only a few observations(or even no o...

متن کامل

Non-linear Analysis of Stability in the Islamic Banking Industry

Stability analysis is one of the most important fields of study in the Islamic banking and finance industry. For measuring stability in Islamic banking, we introduced, for the first time, an Islamic banking stability index (IBS) during 2013 to 2016 which use all CAMEL factors and so seems to be more comprehensive than Z-score stability index which dominantly used in the existing literatures. To...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000